
2152 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 12, DECEMBER 1997

Fig. 5. Measured gain and return losses of the 5.4–10-GHz amplifier.

Fig. 6. Measured gain and return losses of the 2–4-GHz amplifier.

IV. A MPLIFIER PERFORMANCE

The new uniplanar push–pull amplifiers were fabricated on
1.27-mm RT/Duroid 6006, having a relative dielectric constant
of 6.15. Figs. 4 and 5 show the calculated and measured gains
(S21) and input (S11) and output (S22) return losses of the first
amplifier, respectively, designed using NE76184AS. The calculated
magnitude ofS11 is greater than 0 dB below 5 GHz, indicating
a potential instability problem in the amplifier. This was expected
as this transistor is only unconditionally stable from 6 to 11 GHz.
The measured gain is between 3.5–5 dB from 5.4 to 10 GHz.
Fig. 6 shows the measured gain and input and output return losses
of the other amplifier using NE76084AS. The gain is between
10 and 11 dB from 2 to 4 GHz. As seen in Figs. 4 and 5, the
measured and computed results for the 5.4–10 GHz amplifier are
not in a good agreement. A similar discrepancy was seen for the
2–4-GHz amplifier. These discrepancies were expected because many
approximations were involved in the design process; for example,
the effects of the discontinuities in the uniplanar circuits and the
transitions used in the baluns were not taken into account in the
circuit simulations. In addition, we used theS-parameters of the
FET’s from the data manual which do not represent accurately the
S-parameters of the actual devices used. It should be noted here
that the discontinuities and transitions can be accurately modeled
using full-wave methods, and the FET’s used can also be accurately
represented by measuring theirS-parameters. These accurate models

can then be used to achieve a much better agreement between the
amplifiers’ experimental and simulated results. However, these are
beyond the scope of this paper, as our purpose is to demonstrate
the feasibility of the proposed amplifier configuration. The measured
output 1-dB compression points of the 2–4 GHz and 5.4–10-GHz
amplifiers are 17 dBm at 4 GHz and 19 dBm at 10 GHz, respectively.

V. CONCLUSIONS

New broad-band push–pull FET amplifiers have been developed.
These amplifiers employ CPW and slot line and are completely
uniplanar. One amplifier exhibits a gain of 3.5–5 dB over 5.4–10 GHz
and an output 1-dB compression point of 19 dBm at 10 GHz. The
other amplifier has a measured gain from 10 to 11 dB over 2–4 GHz
and an output 1-dB compression point of 17 dBm at 4 GHz. These
amplifiers demonstrate a successful implementation of the push–pull
amplifier configuration using uniplanar technology for MIC’s and
MMIC’s.

ACKNOWLEDGMENT

The authors wish to thank L. Fan and M. Li for their technical
support. They also are grateful to the anonymous reviewers for their
valuable comments and suggestions.

REFERENCES

[1] C. H. Ho, L. Fan, and K. Chang, “New uniplanar coplanar waveguide
hybrid-ring couplers and magic-T’s,”IEEE Trans. Microwave Theory
Tech.,vol. 42, pp. 2440–2448, Dec. 1994.

[2] S. A. Maas,Nonlinear Microwave Circuits. Norwood, MA: Artech
House, 1988.

The Method of Lines for the Hybrid Analysis of
Multilayered Cylindrical Resonator Structures

Dennis Kremer and Reinhold Pregla

Abstract—A very powerful numerical model based on the method of
lines (MoL) is developed for the hybrid analysis of composite multilayered
cylindrical dielectric resonator structures. These structures are composed
of a number of coaxial rings which are arbitrarily layered in the axial
direction. The resonant frequencies, as well as quality factors caused by
radiation or dielectric loss and the corresponding field distributions of
all resonant modes can be determined with the described algorithm.
The theory is verified in case of the conical dielectric resonator and a
comparison of our numerical results with those of other authors shows
excellent consistency.

Index Terms—Conical resonator, MoL, multilayered cylindrical dielec-
tric resonators.
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Fig. 1. Discretization of a composite multilayered resonator structure.

I. INTRODUCTION

In integrated microwave engineering, resonators are utilized in a
variety of applications, including filter elements, the stabilization of
oscillators, frequency meters, and tuned amplifiers. The necessity
of reducing the cost of microwave circuits makes the reduction of
their size essential. In this respect, the low-cost dielectric resonators
became more and more important in telecommunication and satellite
communication. The increasing importance of mobile telecommu-
nication systems and the shift from vehicle-mounted mobile-phone
systems to portable units has especially increased the demand for
dielectric resonators which are compact, reasonably priced, and have
good temperature stability. Due to the proximity of the resonant
frequencies of the various hybrid modes to one another, it is very
important to know all the exact resonant frequencies and the cor-
responding field distributions in the frequency range of interest.
Currently, there are several approaches available for the rigorous
analysis of cylindrical dielectric resonators [1]. Most of them are only
useful for the determination of resonator modes without azimuthal
variations or are restricted to particular geometries. The method of
moments based on the surface integral equation [2], [3], the null-field
method [4], and a combination of the finite-difference time-domain
and Prony’s method [5] have been further developed to enable the
hybrid analysis of isolated dielectric resonators. It has been shown
in a number of papers that the method of lines (MoL) [6] is highly
suitable for the analysis of electromagnetic field problems. The MoL
is a semianalytical method in which the relevant wave equations are
discretized only in one or two directions and solved analytically in
the remaining directions. The MoL behaves stationary and, therefore,
the convergence curves are monotonic [7] making an extrapolation
to the accurate result possible. This leads to results with a high
degree of accuracy with less computational effort. The introduction
of absorbing boundary conditions in the MoL has made it possible
to simulate radiating structures such as microstrip patch antennas [8]
and cylindrical antennas [9].

The purpose of this paper is to show that the MoL can be applied
very efficiently to the analysis of resonator structures in the cylindrical
coordinate system. Our model enables us to investigate resonator
structures with different shapes, e.g., rotationally symmetric, cylin-
drical, or conical forms placed on a substrate. In [10], an isolated
dielectric resonator with a cylindrical form was analyzed and it could
be demonstrated that our model is very accurate. This model can
be modified very easily making the analysis of structures possible
which include metal layers like microstrip ring resonators with the
same algorithm. As a surrounding boundary of the structure, we can
use either absorbing boundary conditions, metallic, or magnetic walls.
The resonator structure is modeled by a set of single coaxial rings
in the radial direction. These rings show permittivities that depend

on thez-direction. Lossy materials can be considered using complex
permittivities. Such multilayered dielectric resonators surrounded by
metallic walls were first investigated by [11] using an algorithm based
on the mode-matching technique and [12] with a differential method.

II. THEORY

In cylindrical coordinates, the electromagnetic field for an inhomo-
geneous dielectric medium can be determined by two vector potentials
�e and�h, each one having only one component e and h in the
z-direction, respectively. If we assume a harmonic time-dependence
in accordance withej!t and a space dependence of the permittivity
according to"r(z), the scalar potentials e and h must fulfill the
Sturm–Liouville differential equation and the Helmholtz equation in
cylindrical coordinates, respectively,
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r = kor and z = koz are the normalized coordinates andko
is the free-space wavenumber. For resonator structures, which are
rotationally symmetric, we get the relation
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with the mode orderm in azimuthal direction. To solve the two
differential equations in (1) and (2) the potentials and the permit-
tivities " are partly discretized perpendicular to the axis of rotation.
Fig. 1 shows the longitudinal section of the discretized computational
window. As the discretization is only enforced in thez-direction,
the potentials and fields are analytically calculated on lines in the
radial direction. We use two different line systems for the potentials
 e and  h, which are shifted toward each other to satisfy the
interface conditions in the discretization direction. According to the
explanations in [6] concerning the derivations on the two line systems
we obtain the following formulas:
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 e and h are column vectors composed of the discretized potentials;
���e and ���h denote diagonal matrices containing the values of the
permittivity on the distinct line system. Substituting the corresponding
difference operators in place of the differential operators in (1) and (2)
results in two sets of coupled differential equations. After decoupling
these equations by transforming them to the main axis, we obtain
a system of uncoupled differential equations for the transformed
potentials ~   

e;h
:
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The matriceskkkre and kkkrh contain the propagation constant in
the radial direction on the main diagonal.TTT e and TTT h are the
transformation matrices.PPP e andPPP h are the difference operators for
the second derivatives according to (4). As a general solution of the
uncoupled differential equations a linear combination of the Bessel
function of the first and the second kind according to

~   e;h = Jm(kkkr r)AAAe;h + Ym(kkkr r)BBBe;h (6)

can be used. This solution enables us to transfer the quantities readily
from one side of a layer to the other. For the normalized radiir = a

and r = b we can use the following matrix form:

~   A
~   B

=
Jm(kkkr a) Ym(kkkr a)

Jm(kkkr b) Ym(kkkr b)

AAA

BBB
(7)

and the derivative tor can be expressed by
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p̂ppm is a block diagonal matrix composed by the matricespppm. The
detailed structure of the normalized cross-products used here can be
found in Appendix A. After some algebraic manipulations, we obtain
the following system of equations for the tangential-field components
on the cylinder planesA andB:
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with the abbreviations
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The detailed compositions of the matricesyyy1A, yyy1B , and yyy2 are
specified in Appendix B. Formally, (9) is equivalent with [6, eq.
(138)]. The further analysis can be carried out as described in
detail in [13]. Only the recurrence relations differ somewhat. For
the transformation from the inner to the outer side we have to use
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respectively. Matching the tangential field components at the inter-
faces of the cylindrical rings yields an indirect eigenvalue problem.
This eigenvalue problem is similar to the one in [6], except that
all matrices are now complex. This problem could be solved very
efficiently by the MoL using the singular value decomposition (SVD)
[14]. One advantage of the SVD is that we obtain a real function with
complex frequencies as argument instead of a complex function with
a complex argument. On the other hand, the field distribution in the
matching plane is provided directly by one of the transformation
matrices. For that very reason it is possible to decide what kind of
mode was found.

III. N UMERICAL RESULTS

A conical dielectric resonator was analyzed with the algorithm
demonstrated here, and the results were compared with those of
[11]. In the radial direction, the shape of the cone was approximated
by a set of single coaxial rings, which consist of inhomogeneous
permittivities inz-direction. In Fig. 2, the resonant frequency of the
TE011 mode is presented versus the heightL. A comparison of our
results with the numerical results in [11] shows that a very good
consistency was achieved.

Fig. 2. Resonant frequency of theTE011 mode in a conical resonator with
D = 2:5mm,H = 3:0mm,h = 250�m, �r = 29:57, and�rs = 10 versus
cone heightL (—theory [11], � MoL).

IV. CONCLUSION

A very powerful numerical model is developed for the hybrid
analysis of dielectric resonator structures of complicated shape, such
as the conical resonator. The computational model is based on the
versatile MoL which has been proven to be very efficient for the
analysis of a wide class of electromagnetic field problems. The
algorithm developed makes the determination of resonant frequencies,
quality factors, and field distributions for all resonant modes in a
composite multilayered anisotropic dielectric resonator possible. Our
numerical results have been compared with those of other authors
and excellent agreement was achieved. As a consequence of the full
vectorial analysis, the semianalytical, and the stationary character of
the MoL our results were obtained with a high degree of accuracy
and with less computational effort.

APPENDIX A

The normalized cross-products [15] used in (8) have the form
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with tA = kkkra and tB = kkkrb:

APPENDIX B

For the sake of brevity, the following notations are used in (9):
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Nonradiating Sources in Time-Domain
Transmission-Line Theory

Ari Sihvola, Gerhard Kristensson, and Ismo V. Lindell

Abstract—The concept of nonradiating (NR) sources is introduced to
transmission lines in the time-domain analysis. A method is presented
to construct localized voltage and current sources which do not produce
any fields outside the source domain. These sources cannot, therefore,
be detected by measurements made outside the source region. The
importance of such sources for the uniqueness of the inverse-source
problem is pointed out, and energy conditions for the uniqueness are
discussed. The analysis can be advantageously used in the design and
optimization of the electromagnetic compatibility (EMC) properties of
transmission lines.

Index Terms—Nonradiating sources, partial differential equations,
transmission-line theory.

I. INTRODUCTION

Direct problems in electromagnetics have unique solutions, which
means that two different fields are necessarily generated by two
different sources. However, the inverse problem is not unique without
additional constraints. In other words, two different sources may
radiate the same electromagnetic field outside the source region. One
consequence of this nonuniqueness property of the inverse-source
problem is that nonradiating (NR) sources exist. NR sources are such
which do not generate any electric or magnetic fields outside their
support.

The inverse-source problem in acoustics and electromagnetics has
been studied by various authors [1], [3], [4], [7]. These papers treat
currents and their radiation in free space from the NR point of view,
and give conditions that the source distributions have to satisfy in
order not to radiate electromagnetic energy. The construction of an
NR-source distribution starts with choice of any function that vanishes
outside a finite domain. Applying the wave operator to this function
gives a certain source function. Because the resulting source function
is a solution of the inhomogeneous-wave equation, it is an NR source
because the field it corresponds to is zero outside the source domain.

One of the strong results of the NR-source studies is the following:
a time-harmonic electric-current distributionJ(r; !) does not radiate
electromagnetic fields outside its support if

k� J(r; !)e
ik � r

dV = 0 (1)

for ! = cjkj. The integral behaves well because the integration
domain is the support of the current distribution, which is a finite
domain. In fact, (1) is a necessary and sufficient condition for a
dynamic current to be NR. In other words, the NR condition is that
certain components vanish of the transverse part of the spatial Fourier
transform of the current density; namely those components for which
jkj = !=c, wherec = 1=

p
�� is the radiation velocity in the medium

permeating the space [3]. To give one example of a single-frequency
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